Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
BMC Musculoskelet Disord ; 25(1): 213, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481217

RESUMO

Osteoporosis is caused by the imbalance of osteoblasts and osteoclasts. The regulatory mechanisms of differentially expressed genes (DEGs) in pathogenesis of osteoporosis are of significant and needed to be further investigated. GSE100609 dataset downloaded from Gene Expression Omnibus (GEO) database was used to identified DEGs in osteoporosis patients. KEGG analysis was conducted to demonstrate signaling pathways related to enriched genes. Osteoporosis patients and the human mesenchymal stem cells (hMSCs) were obtained for in vivo and in vitro resaerch. Lentivirus construction and viral infection was used to knockdown genes. mRNA expression and protein expression were detected via qRT-PCR and western blot assay separately. Alkaline phosphatase (ALP) activity detection, alizarin Red S (ARS) staining, and expression of bone morphogenetic protein 2 (BMP2), osteocalcin (OCN) and Osterix were evaluated to determine osteoblast differentiation capacity. UL-16 binding protein 1 (ULBP1) gene was upregulated in osteoporosis and downregulated in differentiated hMSCs. Knockdown of ULBP1 increased ALP activity, mineralization ability evaluated by ARS staining, expression of BMP2, OCN and Osterix in differentiated hMSCs. Furthermore, rescue experiment demonstrated that suppressed ULBP1 boosted osteoblast differentiation by activating TNF-ß signaling pathway. Knockdown of ULBP1 gene could promoted osteoblast differentiation by activating TNF-ß signaling pathway in differentiated hMSCs. ULBP1 may be a the Achilles' heel of osteoporosis, and suppression of ULBP1 could be a promising treatment for osteoporosis.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Humanos , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Linfotoxina-alfa/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteogênese/genética , Osteoporose/genética , Proteína Smad2/metabolismo
2.
Epilepsy Behav Rep ; 25: 100640, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38235017

RESUMO

The management of epilepsy during pregnancy presents particular challenges for neurologists worldwide. Currently, there are no clear recommendations for oxcarbazepine (OXC) specific target concentration during pregnancy. We conducted this retrospective observational cohort study on pregnant women with epilepsy (WWE) who received OXC monotherapy or polytherapy, at the epilepsy outpatient clinic of a tertiary hospital in eastern China. Sixteen pregnancies of 16 WWE were split into the seizure-free group or the non-seizure-free group, according to whether they had been seizure free for more than one year prior to conception or not. There was a significantly decrease in OXC concentration throughout pregnancy, as indicated by the concentration/dose ratio and the ratio of target concentration (RTC). The second trimester of pregnancy was the period when seizure deterioration occurred the most, particularly in the non-seizure-free group. Lower RTC_OXC was identified to be a risk factor for increasing seizure frequency in both the total group and the non-seizure-free group in both univariate and multivariate analysis, with a threshold of 0.575 for differentiating patients at high-risk and low-risk for seizure deterioration. In conclusion, this study suggested an OXC concentration threshold of 0.575 during pregnancy for assisting neurologists in OXC drug monitoring and dose adaptation.

3.
Opt Express ; 31(21): 34577-34588, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859210

RESUMO

We propose a design of the compact high-resolution photonic crystal (PhC) spectrometer with a wide working bandwidth based on both super-prism and local-super-collimation (LSC) effects. The optimizing methods, finding the ideal incident angle and oblique angle of PhC for a wider working bandwidth and ideal incident beam width and PhC size for a certain resolution requirement, are developed. Besides the theoretical work, for the first time, the experiment of such a PhC spectrometer is conducted in the microwave frequency range, and the beam-splitting effects for different frequencies in a wide working bandwidth agree very well with the theoretical predictions. According to the scalability, with the condition to control the deviations in the fabrication processes the design could be extended to optical frequency ranges, e.g., infrared, visible-light, and ultraviolet ranges. The spectrometer in optical frequencies can be implemented on silicon-on-insulator (SOI) chips as a thin-slab structure so that the operating bandwidth can be expanded further through the multi-layer design. Theoretically, the size of the ultra-high-resolution PhC spectrometer in optical frequency ranges based on our design could be two orders smaller than the traditional design.

5.
Biomolecules ; 13(7)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37509133

RESUMO

Uterine endometrial cancer (UEC) is an estrogen-related tumor. Succinate and heme metabolism play important roles in the progression of multiple tumors. However, the relationship between estrogen, succinate, and heme metabolism and related regulatory mechanisms remain largely unknown. In this study, we observed that the expression of aminolevulinate delta synthase 1 (ALAS1) and solute carrier family member 38 (SLC25A38) in UEC tissues is significantly higher than that in normal tissues. Further analysis showed that estrogen and succinate increased the expression of ALAS1 and SLC25A38 in uterine endometrial cancer cells (UECC), and the administration of succinate upregulated the level of the estrogen receptor (ER). Silencing nuclear receptor coactivator 1 (NCOA1) reversed the effects of estrogen and succinate via downregulation of ALAS1 expression. Additionally, exposure of UECC to heme increased cell viability and invasiveness, while silencing the NCOA1 gene weakened this effect. These findings revealed that estrogen and succinate can synergistically increase the expression of ALAS1 and SLC25A38 via the ERß/NCOA1 axis, promoting heme accumulation and increasing the proliferative and invasive potential of UECC.


Assuntos
Neoplasias do Endométrio , Ácido Succínico , Feminino , Humanos , Heme , Estrogênios/farmacologia , Neoplasias do Endométrio/metabolismo , Receptores de Estrogênio , Ácido Aminolevulínico
6.
Front Immunol ; 14: 992765, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776897

RESUMO

Introduction: Recurrent implantation failure (RIF) is a frustrating challenge because the cause is unknown. The current study aims to identify differentially expressed genes (DEGs) in the endometrium on the basis of immune cell infiltration characteristics between RIF patients and healthy controls, as well as to investigate potential prognostic markers in RIF. Methods: GSE103465, and GSE111974 datasets from the Gene Expression Omnibus database were obtained to screen DEGs between RIF and control groups. Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes Pathway analysis, Gene Set Enrichment Analysis, and Protein-protein interactions analysis were performed to investigate potential biological functions and signaling pathways. CIBERSORT was used to describe the level of immune infiltration in RIF, and flow cytometry was used to confirm the top two most abundant immune cells detected. Results: 122 downregulated and 66 upregulated DEGs were obtained between RIF and control groups. Six immune-related hub genes were discovered, which were involved in Wnt/-catenin signaling and Notch signaling as a result of our research. The ROC curves revealed that three of the six identified genes (AKT1, PSMB8, and PSMD10) had potential diagnostic values for RIF. Finally, we used cMap analysis to identify potential therapeutic or induced compounds for RIF, among which fulvestrant (estrogen receptor antagonist), bisindolylmaleimide-ix (CDK and PKC inhibitor), and JNK-9L (JNK inhibitor) were thought to influence the pathogenic process of RIF. Furthermore, our findings revealed the level of immune infiltration in RIF by highlighting three signaling pathways (Wnt/-catenin signaling, Notch signaling, and immune response) and three potential diagnostic DEGs (AKT1, PSMB8, and PSMD10). Conclusion: Importantly, our findings may contribute to the scientific basis for several potential therapeutic agents to improve endometrial receptivity.


Assuntos
Implantação do Embrião , Genes Reguladores , Transdução de Sinais , Feminino , Humanos , Biomarcadores , Cateninas , Biologia Computacional , Complexo de Endopeptidases do Proteassoma , Proteínas Proto-Oncogênicas , Endométrio , Gravidez
7.
J Reprod Immunol ; 155: 103788, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36580846

RESUMO

Acute lung injury (ALI) is a common acute respiratory disease with high morbidity and mortality rate in pregnant women. Receptor activator of NF-κB ligand (TNFSF11, also known as RANKL) exerts either pro-inflammatory or anti-inflammatory effects on the immune response. LPS administration reduced the survival time (n = 10, p < 0.01), increased wet/dry ratio (n = 10, p < 0.001) and lung injury score (n = 10, p < 0.001), the elevated proportions of plasmacytoid dendritic cells (pDCs) (n = 10, p < 0.0001), tissue-resident DCs (resDCs) (n = 10, p < 0.0001), macrophages (n = 10, p < 0.0001), and neutrophils (n = 10, p < 0.0001), and the expressions of costimulatory molecules and inflammation cytokines (n = 10, p < 0.05) in lungs of pregnant mice, compared with non-pregnant mice. In vitro, progesterone up-regulated the expression of RANKL (n > 6, p < 0.05) on pulmonary fibroblasts. The results of cytokine arrays showed that the cytokines associated with inflammatory response and leukocyte differentiation were decreased in pulmonary fibroblasts after treatment with anti-RANKL neutralizing antibody, compared with control pulmonary fibroblasts. More notably, we found that Tnfsf11-/- pregnant mice had longer survival durations (n = 10, p < 0.01), lower lung injury scores (n = 10, p < 0.05), and lower immune cell infiltration (n = 10, p < 0.05). These data imply that the RANKL/RANK axis plays an essential role in LPS-induced ALI during pregnancy possibly through a variety of pathways.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Animais , Feminino , Humanos , Camundongos , Gravidez , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Citocinas/metabolismo , Pulmão , NF-kappa B/metabolismo , Progesterona/metabolismo
8.
BMC Biol ; 20(1): 276, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482461

RESUMO

BACKGROUND: Decidualization refers to the process of transformation of endometrial stromal fibroblast cells into specialized decidual stromal cells that provide a nutritive and immunoprivileged matrix essential for blastocyst implantation and placental development. Deficiencies in decidualization are associated with a variety of pregnancy disorders, including female infertility, recurrent implantation failure (RIF), and miscarriages. Despite the increasing number of genes reportedly associated with endometrial receptivity and decidualization, the cellular and molecular mechanisms triggering and underlying decidualization remain largely unknown. Here, we analyze single-cell transcriptional profiles of endometrial cells during the window of implantation and decidual cells of early pregnancy, to gains insights on the process of decidualization. RESULTS: We observed a unique IGF1+ stromal cell that may initiate decidualization by single-cell RNA sequencing. We found the IL1B+ stromal cells promote gland degeneration and decidua hemostasis. We defined a subset of NK cells for accelerating decidualization and extravillous trophoblast (EVT) invasion by AREG-IGF1 and AREG-CSF1 regulatory axe. Further analysis indicates that EVT promote decidualization possibly by multiply pathways. Additionally, a systematic repository of cell-cell communication for decidualization was developed. An aberrant ratio conversion of IGF1+ stromal cells to IGF1R+ stromal cells is observed in unexplained RIF patients. CONCLUSIONS: Overall, a unique subpopulation of IGF1+ stromal cell is involved in initiating decidualization. Our observations provide deeper insights into the molecular and cellular characterizations of decidualization, and a platform for further development of evaluation of decidualization degree and treatment for decidualization disorder-related diseases.


Assuntos
Placenta , Células Estromais , Gravidez , Humanos , Feminino , Fator de Crescimento Insulin-Like I/genética
9.
Cell Mol Life Sci ; 79(12): 611, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36449080

RESUMO

Deficiency of decidual NK (dNK) cell number and function has been widely regarded as an important cause of spontaneous abortion. However, the metabolic mechanism underlying the crosstalk between dNK cells and embryonic trophoblasts during early pregnancy remains largely unknown. Here, we observed that enriched glutamine and activated glutaminolysis in dNK cells contribute to trophoblast invasion and embryo growth by insulin-like growth factor-1 (IGF-1) and growth differentiation factor-15 (GDF-15) secretion. Mechanistically, these processes are dependent on the downregulation of EGLN1-HIF-1α mediated by α-ketoglutarate (α-KG). Blocking glutaminolysis with the GLS inhibitor BPTES or the glutamate dehydrogenase inhibitor EGCG leads to early embryo implantation failure, spontaneous abortion and/or fetal growth restriction in pregnant mice with impaired trophoblast invasion. Additionally, α-KG supplementation significantly alleviated pregnancy loss mediated by defective glutaminolysis in vivo, suggesting that inactivated glutamine/α-ketoglutarate metabolism in dNK cells impaired trophoblast invasion and induced pregnancy loss.


Assuntos
Aborto Espontâneo , Animais , Feminino , Camundongos , Gravidez , Diferenciação Celular , Glutamina/farmacologia , Fator 15 de Diferenciação de Crescimento , Fator de Crescimento Insulin-Like I , Ácidos Cetoglutáricos/farmacologia
10.
Theranostics ; 12(15): 6527-6547, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185612

RESUMO

Introduction: Despite great advances in assisted reproductive technology (ART), recurrent implantation failure (RIF) cannot be effectively avoided. Notably, cellular characteristics and communication that regulate endometrial receptivity and differentiation, and its disorders in RIF at window of implantation (WOI) remain rudimentary. Objectives: In this study, we profiled the endometrial cells present at the WOI timing in RIF patients and healthy controls using single-cell RNA sequencing (scRNA-seq) and provided a detailed molecular and cellular map of a healthy and RIF endometrium at the WOI. Method: In the current study, the endometrium from RIF patient (n = 6; age range, 32 - 35 years) and control (Ctrl) (n = 3; age range, 29 - 35 years) groups were studied at a single-cell resolution. single-cell RNA-seq and analysis were performed on the endometrium of patients with RIF and Ctrl. Immunofluorescence, flow cytometry assays, and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to verify cellular identity and function. Results: We profiled the transcriptomes of 60222 primary human endometrial cells isolated from control and RIF patients at a single-cell resolution. We discovered dramatic differential expression of endometrial receptivity-related genes in four major endometrial fibroblast-like cells from RIF patients compared to the control endometrium. We observed that CD49a+CXCR4+NK cells were diminished in proportion with RIF. The decrease in subset of CD63highPGRhigh endometrial epithelial cells with high levels of progesterone receptor, autophagy and exosomes should contribute to the decrease in subset of NK cells. Additionally, we characterized aberrant molecular and cellular characteristics and endometrial cell-cell communication disorders in RIF patients. Conclusion: Our study provides deeper insights into endometrial microenvironment disorder of RIF that are potentially applicable to improving the etiological diagnosis and therapeutics of unexplained RIF.


Assuntos
Integrina alfa1 , Receptores de Progesterona , Adulto , Implantação do Embrião/genética , Endométrio/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Integrina alfa1/genética , Integrina alfa1/metabolismo , Receptores de Progesterona/genética
11.
J Reprod Immunol ; 153: 103693, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35987137

RESUMO

Intrauterine adhesion (IUA) is a fibrotic disease, with complex and multifactorial process, causing menstrual disorders, pregnancy loss or infertility. LIGHT (also named TNFSF14), mainly expressed by immune cells, has been reported to be associated with tissue fibrosis. However, the features of immunocyte subsets, the expression and roles of LIGHT and its receptor HVEM (herpes virus entry mediator) and LTßR (lymphotoxin beta receptor) in IUA remain largely unknown. Compared with the control group, we observed increased ratios of CD45+ cells, neutrophils, T cells, macrophages and decreased natural killer cells proportion, and high LIGHT expression on CD4+ T cells and macrophages in IUA endometrium. Further analysis showed there was a positive correlation between upregulated profibrotic factors (e.g., ɑ-smooth muscle actin, transforming growth factor ß1) and HVEM in IUA endometrial tissue. More importantly, recombinant human LIGHT protein directly up-regulated the expression of HVEM, LTßR, profibrotic and proinflammatory factors expression in human endometrial stromal cells. These findings reveal abnormal changes of immune cell subsets proportion and the overexpression of LIGHT-HVEM/LTßR axis in IUA endometrium, should contribute to inflammation and fibrosis formation of IUA.


Assuntos
Receptor beta de Linfotoxina , Membro 14 de Receptores do Fator de Necrose Tumoral , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Doenças Uterinas , Actinas , Feminino , Fibrose/genética , Humanos , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/fisiologia , Gravidez , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Transdução de Sinais , Fator de Crescimento Transformador beta1 , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Doenças Uterinas/genética , Doenças Uterinas/patologia
12.
Int J Med Sci ; 19(9): 1430-1441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035375

RESUMO

Uterine corpus endometrial carcinoma (UCEC) is one of the most common types of cancer in women, and the incidence is rapidly increasing. Studies have shown that various signaling pathways serve crucial roles in the tumorigenesis of UCEC, amongst which the Wnt/ß-catenin pathway is of great interest due to its crucial role in cell proliferation and the huge potential as a therapeutic target. In the present study, it was shown that FBXO17, which is a member of the F-box family, is abnormally downregulated in UCEC tissues compared with non-tumor endometrial tissues, and this was significantly associated with the clinical histological grade, as well as the abnormal proliferation of the UCEC cell line, Ishikawa, both in vitro and in vivo. Besides, the results suggested that FBXO17 may inhibit the Wnt/ß-catenin signaling pathway and influence the expression of adhesion molecules, such as E-cadherin and N-cadherin in Ishikawa cells. In conclusion, these findings indicate that FBXO17 is a novel inhibitor of endometrial tumor development and it likely exerts effects via regulation of the Wnt signaling pathway.


Assuntos
Neoplasias do Endométrio , Proteínas F-Box , Via de Sinalização Wnt , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Endométrio/patologia , Proteínas F-Box/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , beta Catenina
13.
Biomolecules ; 12(6)2022 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-35740976

RESUMO

In patients, endometrial hyperplasia (EH) is often accompanied by abnormal uterine bleeding (AUB), which is prone to release large amounts of heme. However, the role of excess heme in the migration and infiltration of immune cells in EH complicated by AUB remains unknown. In this study, 45 patients with AUB were divided into three groups: a proliferative phase group (n = 15), a secretory phase group (n = 15) and EH (n = 15). We observed that immune cell subpopulations were significantly different among the three groups, as demonstrated by flow cytometry analysis. Of note, there was a higher infiltration of total immune cells and macrophages in the endometrium of patients with EH. Heme up-regulated the expression of heme oxygenase-1 (HO-1) and nuclear factor erythroid-2-related factor 2 (Nrf2) in endometrial epithelial cells (EECs) in vitro, as well as chemokine (e.g., CCL2, CCL3, CCL5, CXCL8) levels. Additionally, stimulation with heme led to the increased recruitment of THP-1 cells in an indirect EEC-THP-1 co-culture unit. These data suggest that sustained and excessive heme in patients with AUB may recruit macrophages by increasing the levels of several chemokines, contributing to the accumulation and infiltration of macrophages in the endometrium of EH patients, and the key molecules of heme metabolism, HO-1 and Nrf2, are also involved in this regulatory process.


Assuntos
Hiperplasia Endometrial , Doenças Uterinas , Hiperplasia Endometrial/complicações , Feminino , Heme , Humanos , Macrófagos , Fator 2 Relacionado a NF-E2 , Hemorragia Uterina/complicações
14.
Front Neurosci ; 16: 850193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35527820

RESUMO

In response to external threatening signals, animals evolve a series of defensive behaviors that depend on heightened arousal. It is believed that arousal and defensive behaviors are coordinately regulated by specific neurocircuits in the central nervous system. The ventral tegmental area (VTA) is a key structure located in the ventral midbrain of mice. The activity of VTA glutamatergic neurons has recently been shown to be closely related to sleep-wake behavior. However, the specific role of VTA glutamatergic neurons in sleep-wake regulation, associated physiological functions, and underlying neural circuits remain unclear. In the current study, using an optogenetic approach and synchronous polysomnographic recording, we demonstrated that selective activation of VTA glutamatergic neurons induced immediate transition from sleep to wakefulness and obviously increased the amount of wakefulness in mice. Furthermore, optogenetic activation of VTA glutamatergic neurons induced multiple defensive behaviors, including burrowing, fleeing, avoidance and hiding. Finally, viral-mediated anterograde activation revealed that projections from the VTA to the central nucleus of the amygdala (CeA) mediated the wake- and defense-promoting effects of VTA glutamatergic neurons. Collectively, our results illustrate that the glutamatergic VTA is a key neural substrate regulating wakefulness and defensive behaviors that controls these behaviors through its projection into the CeA. We further discuss the possibility that the glutamatergic VTA-CeA pathway may be involved in psychiatric diseases featuring with excessive defense.

15.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 36(3): 296-304, 2022 Mar 15.
Artigo em Chinês | MEDLINE | ID: mdl-35293170

RESUMO

Objective: To investigate the safety of nano-hydroxyapatite/polyamide 66 (n-HA/PA66) bioactive support in bone grafting and fusion for elderly patients with lumbar tuberculosis, and to analyze its effectiveness and advantages by comparing with autologous iliac bone grafting. Methods: A retrospective analysis was performed on 48 elderly patients with lumbar tuberculosis who met the selection criteria between January 2017 and January 2020. The patients all underwent one-stage posterior pedicle screw internal fixation combined with anterior lesion removal and bone grafting and fusion, of which 23 cases applied n-HA/PA66 bioactive support+allogeneic bone graft (n-HA/PA66 group) and 25 cases applied autologous iliac bone graft (autologous iliac bone group). There was no significant difference between the two groups in gender, age, bone density, disease duration, lesion segment, and preoperative pain visual analogue scale (VAS) score, Japanese Orthopaedic Association (JOA) score, and Cobb angle ( P>0.05). The operation time, intraoperative blood loss, and postoperative complications, as well as the VAS score, JOA score, American Spinal Injury Association (ASIA) spinal cord injury grading, Cobb angle, and bone fusion were recorded and compared between the two groups. Results: The operations were completed successfully in both groups. n-HA/PA66 group had significantly less operation time and intraoperative blood loss than the autologous iliac bone group ( P<0.05). All patients were followed up 12-24 months, with an average of 15.7 months. And the difference in follow-up time between the two groups was not significant ( P>0.05). Postoperative complications occurred in 3 cases (13%) in the n-HA/PA66 group and 10 cases (40%) in the autologous iliac group, and the difference in the incidence of complications between the two groups was significant ( χ 2=4.408, P=0.036). The postoperative VAS scores and JOA scores significantly improved when compared with the preoperative scores in both groups ( P<0.05), and the difference was significant ( P<0.05) between 2 weeks after operation and the last follow-up. The difference in VAS score at 2 weeks after operation was significant between the two groups ( P<0.05), and there was no significant difference ( P>0.05) at the other time points. At last follow-up, according to the ASIA grading, the effective improvement rate was 86% (18/21) in the n-HA/PA66 group and 90% (18/20) in the autologous iliac group, with no significant difference ( χ 2=0.176, P=0.675). Imaging review showed that grade Ⅰ bony fusion was obtained in both groups, and the fusion time of bone graft in the n-HA/PA66 group was significantly longer than that in the autologous iliac bone group ( P<0.05). There was no significant difference in the Cobb angle at each time point between the two groups ( P>0.05). No recurrence of tuberculosis, loosening or fracture of the internal fixator, or displacement of the bone graft was observed during follow-up. Conclusion: In elderly patients with lumbar spine tuberculosis, the n-HA/PA66 bioactive support combined with allogeneic bone graft can effectively restore and maintain the fusion segment height and physiological curvature of the lumbar spine, and the fusion rate of bone graft is similar to that of autologous iliac bone, which can achieve better effectiveness.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Fusão Vertebral , Tuberculose da Coluna Vertebral , Idoso , Transplante Ósseo/métodos , Durapatita , Humanos , Nylons , Estudos Retrospectivos , Fusão Vertebral/métodos , Resultado do Tratamento , Tuberculose da Coluna Vertebral/cirurgia
16.
Autophagy ; 18(10): 2459-2480, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35220880

RESUMO

Massive infiltrated and enriched decidual macrophages (dMφ) have been widely regarded as important regulators of maternal-fetal immune tolerance and trophoblast invasion, contributing to normal pregnancy. However, the characteristics of metabolic profile and the underlying mechanism of dMφ residence remain largely unknown. Here, we observe that dMφ display an active glycerophospholipid metabolism. The activation of ENPP2-lysophosphatidic acid (LPA) facilitates the adhesion and retention, and M2 differentiation of dMφ during normal pregnancy. Mechanistically, this process is mediated through activation of the LPA receptors (LPAR1 and PPARG/PPARγ)-DDIT4-macroautophagy/autophagy axis, and further upregulation of multiple adhesion factors (e.g., cadherins and selectins) in a CLDN7 (claudin 7)-dependent manner. Additionally, poor trophoblast invasion and placenta development, and a high ratio of embryo loss are observed in Enpp2±, lpar1-/- or PPARG-blocked pregnant mice. Patients with unexplained spontaneous abortion display insufficient autophagy and cell residence of dMφ. In therapeutic studies, supplementation with LPA or the autophagy inducer rapamycin significantly promotes dMφ autophagy and cell residence, and improves embryo resorption in Enpp2± and spontaneous abortion mouse models, which should be dependent on the activation of DDIT4-autophagy-CLDN7-adhesion molecules axis. This observation reveals that inactivation of ENPP2-LPA metabolism and insufficient autophagy of dMφ result in resident obstacle of dMφ and further increase the risk of spontaneous abortion, and provides potential therapeutic strategies to prevent spontaneous abortion.Abbreviations: ACTB: actin beta; ADGRE1/F4/80: adhesion G protein-coupled receptor E1; Atg5: autophagy related 5; ATG13: autophagy related 13; BECN1: beclin 1; CDH1/E-cadherin: cadherin 1; CDH5/VE-cadherin: cadherin 5; CFSE: carboxyfluorescein succinimidyl ester; CLDN7: claudin 7; CSF1/M-CSF: colony stimulating factor 1; CSF2/GM-CSF: colony stimulating factor 2; Ctrl: control; CXCL10/IP-10: chemokine (C-X-C) ligand 10; DDIT4: DNA damage inducible transcript 4; dMφ: decidual macrophage; DSC: decidual stromal cells; ENPP2/ATX: ectonucleotide pyrophosphatase/phosphodiesterase 2; Enpp2±: Enpp2 heterozygous knockout mouse; ENPP2i/PF-8380: ENPP2 inhibitor; EPCAM: epithelial cell adhesion molecule; ESC: endometrial stromal cells; FGF2/b-FGF: fibroblast growth factor 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GPCPD1: glycerophosphocholine phosphodiesterase 1; HE: heterozygote; HIF1A: hypoxia inducible factor 1 subunit alpha; HNF4A: hepatocyte nuclear factor 4 alpha; HO: homozygote; ICAM2: intercellular adhesion molecule 2; IL: interleukin; ITGAV/CD51: integrin subunit alpha V; ITGAM/CD11b: integrin subunit alpha M; ITGAX/CD11b: integrin subunit alpha X; ITGB3/CD61: integrin subunit beta 3; KLRB1/NK1.1: killer cell lectin like receptor B1; KRT7/cytokeratin 7: keratin 7; LPA: lysophosphatidic acid; LPAR: lysophosphatidic acid receptor; lpar1-/-: lpar1 homozygous knockout mouse; LPAR1i/AM966: LPAR1 inhibitor; LY6C: lymphocyte antigen 6 complex, locus C1; LYPLA1: lysophospholipase 1; LYPLA2: lysophospholipase 2; Lyz2: lysozyme 2; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MARVELD2: MARVEL domain containing 2; 3-MA: 3-methyladenine; MBOAT2: membrane bound O-acyltransferase domain containing 2; MGLL: monoglyceride lipase; MRC1/CD206: mannose receptor C-type 1; MTOR: mechanistic target of rapamycin kinase; NP: normal pregnancy; PDGF: platelet derived growth factor; PLA1A: phospholipase A1 member A; PLA2G4A: phospholipase A2 group IVA; PLPP1: phospholipid phosphatase 1; pMo: peripheral blood monocytes; p-MTOR: phosphorylated MTOR; PPAR: peroxisome proliferator activated receptor; PPARG/PPARγ: peroxisome proliferator activated receptor gamma; PPARGi/GW9662: PPARG inhibitor; PTPRC/CD45: protein tyrosine phosphatase receptor type, C; Rapa: rapamycin; RHEB: Ras homolog, mTORC1 binding; SA: spontaneous abortion; SELE: selectin E; SELL: selectin L; siCLDN7: CLDN7-silenced; STAT: signal transducer and activator of transcription; SQSTM1: sequestosome 1; TJP1: tight junction protein 1; VCAM1: vascular cell adhesion molecule 1; WT: wild type.


Assuntos
Aborto Espontâneo , Autofagia , Aborto Espontâneo/genética , Aborto Espontâneo/metabolismo , Actinas/metabolismo , Aciltransferases/metabolismo , Animais , Autofagia/genética , Proteína Beclina-1/metabolismo , Caderinas/metabolismo , Quimiocina CXCL10/metabolismo , Claudinas/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Ésteres/metabolismo , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Glicerofosfolipídeos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fosfolipases A2 do Grupo IV/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Integrinas/metabolismo , Queratina-7/metabolismo , Ligantes , Lisofosfolipase/metabolismo , Lisofosfolipídeos/metabolismo , Proteína 2 com Domínio MARVEL , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Monoacilglicerol Lipases/metabolismo , Muramidase/metabolismo , PPAR gama/metabolismo , Fosfolipases , Fosfolipases A1/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Gravidez , Pirofosfatases/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores Semelhantes a Lectina de Células NK/metabolismo , Selectinas/metabolismo , Proteína Sequestossoma-1/metabolismo , Sirolimo , Serina-Treonina Quinases TOR/metabolismo , Tioléster Hidrolases
17.
Sci Adv ; 8(8): eabj2488, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35196096

RESUMO

Decidualization is an intricate biological process in which extensive remodeling of the endometrium occurs to support the development of an implanting blastocyst. However, the immunometabolic mechanisms underlying this process are still largely unknown. We found that the decidualization process is accompanied by the accumulation of fructose-1,6-bisphosphate (FBP). The combination of FBP with pyruvate kinase M stimulated IL-27 secretion by endometrial stromal cells in an ERK/c-FOS-dependent manner. IL-27 induced decidual COX-2+ M2-like macrophage differentiation, which promotes decidualization, trophoblast invasion, and maternal-fetal tolerance. Transfer of Ptgs2+/COX-2+ macrophages prevented fetal loss in Il27ra-deleted pregnant mice. FBP levels were low in plasma and decidual tissues of patients with unexplained recurrent spontaneous abortion. In therapeutic studies, FBP supplementation significantly improved embryo loss by up-regulation of IL-27-induced COX-2+ macrophage differentiation in a mouse model of spontaneous abortion. These findings collectively provide a scientific basis for a potential therapeutic strategy to prevent pregnancy loss.

19.
BMC Genomics ; 22(1): 836, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34794392

RESUMO

BACKGROUND: Bean pyralid is one of the major leaf-feeding insects that affect soybean crops. DNA methylation can control the networks of gene expressions, and it plays an important role in responses to biotic stress. However, at present the genome-wide DNA methylation profile of the soybean resistance to bean pyralid has not been reported so far. RESULTS: Using whole-genome bisulfite sequencing (WGBS) and RNA-sequencing (RNA-seq), we analyzed the highly resistant material (Gantai-2-2, HRK) and highly susceptible material (Wan82-178, HSK), under bean pyralid larvae feeding 0 h and 48 h, to clarify the molecular mechanism of the soybean resistance and explore its insect-resistant genes. We identified 2194, 6872, 39,704 and 40,018 differentially methylated regions (DMRs), as well as 497, 1594, 9596 and 9554 differentially methylated genes (DMGs) in the HRK0/HRK48, HSK0/HSK48, HSK0/HRK0 and HSK48/HRK48 comparisons, respectively. Through the analysis of global methylation and transcription, 265 differentially expressed genes (DEGs) were negatively correlated with DMGs, there were 34, 49, 141 and 116 negatively correlated genes in the HRK0/HRK48, HSK0/HSK48, HSK0/HRK0 and HSK48/HRK48, respectively. The MapMan cluster analysis showed that 114 negatively correlated genes were clustered in 24 pathways, such as protein biosynthesis and modification; primary metabolism; secondary metabolism; cell cycle, cell structure and component; RNA biosynthesis and processing, and so on. Moreover, CRK40; CRK62; STK; MAPK9; L-type lectin-domain containing receptor kinase VIII.2; CesA; CSI1; fimbrin-1; KIN-14B; KIN-14 N; KIN-4A; cytochrome P450 81E8; BEE1; ERF; bHLH25; bHLH79; GATA26, were likely regulatory genes involved in the soybean responses to bean pyralid larvae. Finally, 5 DMRs were further validated that the genome-wide DNA data were reliable through PS-PCR and 5 DEGs were confirmed the relationship between DNA methylation and gene expression by qRT-PCR. The results showed an excellent agreement with deep sequencing. CONCLUSIONS: Genome-wide DNA methylation profile of soybean response to bean pyralid was obtained for the first time. Several specific DMGs which participated in protein kinase, cell and organelle, flavonoid biosynthesis and transcription factor were further identified to be likely associated with soybean response to bean pyralid. Our data will provide better understanding of DNA methylation alteration and their potential role in soybean insect resistance.


Assuntos
Epigenoma , Animais , Metilação de DNA , Perfilação da Expressão Gênica , Larva/genética , /genética
20.
J Reprod Immunol ; 148: 103364, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34482001

RESUMO

Indoleamine 2, 3-dioxygenase (IDO), a tryptophan-catabolizing enzyme, is essential in physiological immunoregulation. The present research was conducted to elucidate the expression and roles of IDO in decidual macrophages (dMφ) during early pregnancy. Here, we observed a remarkable decrease of IDO+ dMφ from patients with unexplained recurrent spontaneous abortion (URSA). IDO+ dMφ displayed M2 phenotype with higher CD206, CD209 and CD163, and lower CD86. Interestingly, treatment with 1-methyl-d-tryptophan (1-MT, an IDO pathway inhibitor) led to the M1 bias of dMφ. Further analysis of the cytokine array and the qPCR showed decreased levels of trophoblast proliferation or invasion-related molecules (e.g., CXCL12 and BMP2) in 1-MT-treated dMφ. The data of co-culture system showed that 1-MT-pretreated dMφ decreased the proliferation and the expression of Ki-67 and Bcl-2, and increased cell apoptosis of HTR-8/Snveo cells. Additionally, the expression of IDO in U937 cells was up-regulated by decidual stromal cells (DSC) and HTR-8/Snveo cells in vitro, as well as estradiol and medroxyprogesterone. These data suggest that endocrine environment, DSC and trophoblasts should contribute to the high level of IDO in dMφ, and IDO+ dMφ with M2 dominant phenotype promote the survival of trophoblasts during early pregnancy. The abnormal lower level of IDO should trigger the dysfunction of dMφ, further suppress the survival of trophoblasts and increase the risk of miscarriage.


Assuntos
Aborto Espontâneo/imunologia , Decídua/imunologia , Macrófagos/imunologia , Gravidez/imunologia , Células Th2/imunologia , Trofoblastos/fisiologia , Apoptose , Diferenciação Celular , Proliferação de Células , Técnicas de Cocultura , Citocinas/metabolismo , Feminino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Recidiva , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...